Skew constacyclic codes over Galois rings
نویسندگان
چکیده
We generalize the construction of linear codes via skew polynomial rings by using Galois rings instead of finite fields as coefficients. The resulting non commutative rings are no longer left and right Euclidean. Codes that are principal ideals in quotient rings of skew polynomial rings by a two sided ideals are studied. As an application, skew constacyclic self-dual codes over GR(4) are constructed. Euclidean self-dual codes give self-dual Z4−codes. Hermitian self-dual codes yield 3−modular lattices and quasi-cyclic self-dual Z4−codes.
منابع مشابه
Skew constacyclic codes over finite chain rings
Skew polynomial rings over finite fields ([7] and [10]) and over Galois rings ([8]) have been used to study codes. In this paper, we extend this concept to finite chain rings. Properties of skew constacyclic codes generated by monic right divisors of x − λ, where λ is a unit element, are exhibited. When λ = 1, the generators of Euclidean and Hermitian dual codes of such codes are determined tog...
متن کامل2-D skew constacyclic codes over R[x, y; ρ, θ]
For a finite field $mathbb{F}_q$, the bivariate skew polynomial ring $mathbb{F}_q[x,y;rho,theta]$ has been used to study codes cite{XH}. In this paper, we give some characterizations of the ring $R[x,y;rho,theta]$, where $R$ is a commutative ring. We investigate 2-D skew $(lambda_1,lambda_2)$-constacyclic codes in the ring $R[x,y;rho,theta]/langle x^l-lambda_1,y^s-lambda_2rangle_{mathit{l}}.$ A...
متن کاملConstacyclic Codes over Group Ring (Zq[v])/G
Recently, codes over some special finite rings especially chain rings have been studied. More recently, codes over finite non-chain rings have been also considered. Study on codes over such rings or rings in general is motivated by the existence of some special maps called Gray maps whose images give codes over fields. Quantum error-correcting (QEC) codes play a crucial role in protecting quantum ...
متن کاملSkew Cyclic and Quasi-Cyclic Codes of Arbitrary Length over Galois Rings
We mainly investigate the structures of skew cyclic and skew quasicyclic codes of arbitrary length over Galois rings. Similar to [5], our results show that the skew cyclic codes are equivalent to either cyclic and quasi-cyclic codes over Galois rings. Moreover, we give a necessary and sufficient condition for skew cyclic codes over Galois rings to be free. A sufficient condition for 1-generator...
متن کاملCodes over a Non Chain Ring with Some Applications
An significant milestone study in coding theory recognized to be the paper written by Hammons at al. [1]. Fields are useful area for constructing codes but after the study [1] finite ring have received a great deal of attention. Most of the studies are concentrated on the case with codes over finite chain rings. However, optimal codes over nonchain rings exist (e.g see [2].) In [3], et al. stud...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Adv. in Math. of Comm.
دوره 2 شماره
صفحات -
تاریخ انتشار 2008